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Prologue

This Habilitation concerns quantum theory, and I like to imagine its relation to
quantum physics with the artwork by Kumi Yamashita of Fig. 1. On the left we
have quantum physics, understood as experimental quantum physics, which con-
sists of events, potentially repeated, giving rise to relative frequencies of these
events. Which events are observed is of course all but accidental—it is guided by
quantum theory—but ultimately they are events. On the right we have the theory
of quantum physics, whose relation to the physical world is very mysterious to me.
That relation between the abstract and actual is particularly thorny in the case of
quantum theory, given the disagreement on the metaphysics of the theory—does
quantum theory tell us that we live in a multiverse, and that there are virtually
infinitely many copies of myself? Or do we "just" live in one non-local-realistic uni-
verse? And: how is it possible that we disagree on such transcendental matters?
While very important, these questions will be set aside in this Habilitation.

Fig. 1: Quantum theory (the abstract world) can be imagined to shed a very special light on the physical
world, namely give rise to surprising events. This Habilitation investigates the interplay of four aspects
of quantum theory—non-commutative spaces, the tensor product, the role of positive elements, and
the role of complex numbers—through "From the whole to the parts", "Quantum magic squares", and
"Shadows of infinity".

Instead, I would like to focus on some mathematical aspects of quantum theory,
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of which I want to highlight four. The first is the fact that quantum systems are
described with non-commutative structures. Discovering non-commutativity can be
imagined as discovering a new universe (Fig. 2): Classical physics corresponds to
level 1 of this universe, whereas quantum physics corresponds to any level higher
than one. The level is to be understood as the internal dimension of the system. For
example, a qubit is a system at level 2, because it is represented by a 2⇥ 2 matrix,
whereas a qudit is a system at level d, because it is represented by a d ⇥ d matrix.
A classical system is represented by a 1 ⇥ 1 matrix, i.e. by a number—this would
describe a random classical variable. The need to represent the state of the system
by a matrix testifies to the non-commutative nature of the theory that we are trying
to highlight.

Fig. 2: Discovering quantum physics is like discovering a new universe.

The second aspect is the tensor product, which gives rise to a new compositional
universe (Fig. 3). Describing how to compose is as fundamental as describing single
systems, and I believe it is a misconception of reductionism to overestimate the
importance of single systems. In the case of quantum theory, much of the ‘magic’
and ‘mystery’ come from composing with the tensor product instead of the Cartesian
product. Namely, the joint system of two quantum systems (two ‘universes’, in our
running metaphor) is described by their tensor product. Physicists tend to imagine
the tensor product so that if we pick an orthonormal basis for the first universe,
for every element of this basis there is an entire second universe attached to it. A
more formal definition of the tensor product is fairly complicated, and invokes the
universal property of the tensor product in category theory.

The third aspect is that part of this universe is positive, and these positive ele-
ments play a distinguished role (Fig. 4). The positive elements form a cone—namely
the cone of positive semidefinite matrices—which is much harder to describe than
the underlying ‘universe’, which forms a vector space. In fact, the state of a quan-
tum system is described by a positive semidefinite matrix of trace 1, so for every
level of this universe we do not have a cone but a convex set. Now, these cones
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Fig. 3: The tensor product gives rise to a new compositional universe.

interact in a very rich way with the compositional structure of the universes: the
tensor product of the cones is not the cone of the tensor product (because the tensor
product interacts nicely with vector spaces, not with cones), and the convex com-
bination of cones is not the cone of composite system system either (i.e., there are
entangled states). In this Habilitation we will explore this very fertile interaction
from various angles.

Fig. 4: The cone of positive elements play a distinguished role in quantum theory, because they are used
to describe quantum states.

The fourth aspect is the fact that this universe uses complex numbers (Fig. 5): It
has a real and an imaginary part, and so do its positive elements. The composition
mixes up the real and imaginary part in a ‘consistent’ way as far as the number of
parameters is concerned: A d ⇥ d complex positive semidefinite matrix has d2 free
real parameters, and the composition of a quantum system at level d and one at
level s is described by a ds⇥ ds matrix, which has (ds)2 = d2s2 real parameters. In
this Habilitation we will challenge this aspect by considering a hyperreal and a hy-
perimaginary part, and we will show that some long-standing problems in quantum
theory can be solved over the hypercomplex numbers.

More generally, in this Habilitation we investigate the interplay of these four
ingredients from three perspectives: First we will go from the whole to the parts,
from many different perspectives (Section 1), then we will study magic squares
and their quantum cousins (Section 2), and finally we will investigate shadows of
infinity in the problem of tensor stable positivity (Section 3).
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Fig. 5: This universe is complex—it has a real and an imaginary part—, and this interacts nicely with
the composition structure.

A faithful companion through our journey will be free semialgebraic geometry,
which often studies the same mathematical objects as quantum theory but from a
different perspective (Fig. 6). ‘Free’ means noncommutative because it is free of
the commutation relation, that is, it studies noncommutative versions of semialge-
braic sets. Since quantum information theory is a noncommutative generalisation
of classical information theory, ‘free’ is naturally linked to ‘quantum’. Moreover,
positivity (and convexity) play a very important role in both fields, since semialge-
braic geometry examines questions arising from nonnegativity, such as polynomial
inequalities, whereas positive elements play a distinguished role in quantum theory,
as we highlighted above.

While the two disciplines often study the same objects, they tend to do so from
different angles, and hence ask different questions. Generally speaking, free semi-
algebraic geometry tends to study the sets (their geometrical structure, character-
isation, etc), whereas quantum theory puts the emphasis on the elements of these
sets (because they correspond to quantum states). For example, in quantum the-
ory, given an element of a tensor product space one wants to know whether it is
positive semidefinite or entangled, and how this can be efficiently represented and
manipulated, whereas in free semialgebraic geometry one characterises the geom-
etry of the set of all such elements. I have had the pleasure to collaborate with my
colleague Tim Netzer in recent years—an expert on free semialgebraic geometry—,
and of exploring the richness of combining these two perspectives. This connection
to free semialgebraic geometry will be a thread seaming the various themes of this
Habilitation, and we have written an invitation to the intersection of both topics in
P13.
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Fig. 6: Free semialgebraic geometry and quantum information theory often look at similar landscapes
from different perspectives, as surveyed in P13 and depicted in the fantastic world by M. C. Escher.
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Chapter 1

Shedding some light on
Quantum Theory

This Habilitation investigates the interplay of four aspects of quantum theory (non-
commutativity, the tensor product, positive elements and complex numbers) from
three perspectives: From the whole to the parts (Section 1, based on P1, P2, P3,
P4, P5, P6, P7, P8, P9 and P10), quantum magic squares (Section 2, based on P11),
and shadows of infinity (Section 3, based on P12). In addition, P13 provides an
overview of some of these results in the form of an invitation to the topic.

1 From the whole to the parts

The relations between the whole and its parts are a ‘classical’ topic in metaphysics,
and, when constraied to the mathematical realm, concern the study of composi-
tionality —how objects compose and decompose. Composing is usually the ‘easy’
direction; it is the constructive direction. The inverse problem is decomposing,
which could be concerned, e.g., with which properties of the whole can be trans-
ferred to the parts. Two notes: First, in the abstract world, the only object whose
whole can be put in one-to-one correspondence with a proper part is infinity—this
is in fact a defining property of infinity. In our work we will only be concerned with
finite systems. The second note concerns the unique and very surprising relations
between the parts and the whole in quantum theory: in a maximally entangled
state, we have perfect knowledge of the whole and maximal lack of knowledge of
the parts. In our work, we investigate the relation between the parts and the whole
in a general way for vector spaces composed with the tensor product, with positivity
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1. From the whole to the parts

cones playing a distinguished role. This setting includes the description of quantum
many-body systems as a special case, but also that of multivariate polynomials, as
we will see. We will be guided by the following questions:

Q1. How do the parts form the whole? (Section 1.1)

For a given whole, we will describe any decomposition using a weighted sim-
plicial complex ⌦. This includes the tensor rank decomposition and the linear
decomposition, but many more too.

Q2. If the whole is invariant, are the parts invariant too? (Section 1.2)

This initiates the study of which properties of the whole can be transferred
to the parts. To start with, we consider invariance under the permutation of
some parts, and ask whether there is an expression of the parts that certi-
fies this invariance. We give a sufficient condition for the existence of this
certificate.

Q3. If the whole is positive, are the parts positive too? (Section 1.3)

For several notions of positivity (i.e. several cones), we ask whether the parts
can contain a certificate that the whole is in a cone. The answer is, generally,
‘yes’ but at a very high price—where ‘price’ means rank, i.e. number of terms
in the decomposition. We will consider invariant and positive wholes, i.e. this
question combined with Q2. P1 contains the framework that addresses Q1,
Q2 and Q3.

Q4. What if the parts only approximate the whole? (Section 1.4)

Does the answer to Q2 and Q3 change if the parts give rise to a whole which
is "-close to the original one? Yes, it does: certifying positivity in the parts
can be much easier in the approximate case. This question is addressed in P2,
leveraging P1’s framework.

Q5. What about other worlds with the same parts-whole relation, such as multivari-
ate polynomials? (Section 1.5)

Since multivariate polynomials are also described by the tensor product of
vector spaces, we apply our entire framework—which is inspired by tensor
decompositions—to polynomials, and transfer many results. This question is
addressed in P3 (leveraging P1’s framework and P2’s results).

Q6. Given some shadows of the whole, is the whole positive? (Section 1.6)

By ‘shadows’ we mean a few moments of a matrix. So the question is: Given
a few moments tr(M k) for k = 1, . . . , m of a matrix M , can we tell at most

2



1. From the whole to the parts

Fig. 1.1: P1 provides a new framework to decompose objects of tensor product spaces in terms of their
parts, including invariance and positivity. P2 addresses the approximate case, and P3 applies the frame-
work to polynomials. This Gala of spheres, by Dalí, is a remarkable composition of a whole (Gala’s bust),
or decomposition into some surprising parts.

and at least how far it is from the cone of positive semidefinite matrices? We
address this question in P6.

Q7. Which wholes can be divided into arbitrarily many parts? (Section 1.7)

Namely, which states have a continuum limit? We address this question for
Matrix Product States in P8, which requires a generalisation of the canonical
form and its fundamental theorem provided in P7. Since our results imply
that not every continuum limit of a Matrix Product State can be expressed as
a continuous Matrix Product State, we propose a generalisation of the latter
in P9.

Q8. Which composition rules preserve the order of the parts? (Section 1.8)

If the parts are in a cone, they build a partial order, but this relation is gen-
erally not preserved by the composition of the parts. In P10 we propose
a composition rule that preserves this relation. This is relevant for recent
approaches to (quantum) natural language processing, which represent the
meaning of words by positive semidefinite matrices, and hyponymy by the
partial order of positive semidefinite matrices. Our composition rule, thus,
preserves hyponymy.

3



1. From the whole to the parts

1.1 How do the parts form the whole?

If the parts are vector spaces V1, . . . Vn, giving rise to the composite vector space
V = V1 ⌦ . . .⌦ Vn, and the whole is an element v 2 V , the question is:

How can v be decomposed into its parts, that is, into vectors of Vi?

Clearly, v can always be decomposed as

v =
rX

↵=1

a↵ ⌦ b↵ ⌦ . . .⌦ z↵, (1.1)

but bear in mind that this decomposition is highly non-unique. What is unique is
the minimal such r, called the tensor rank of v. If we only had three parts (n= 3),
we could represent this decomposition as a full simplex,

1 2

3

where the filled face indicates that the summation index ↵ is shared by the 3 parts.
But there are many other ways to decompose v. The parts could be connected

‘in a line’,

v =
rX

↵1,↵2,...,↵n�1=1

a↵1
⌦ b↵1,↵2

⌦ c↵2,↵3
⌦ . . .⌦ z↵n�1

(1.2)

represented as

1 2 3
· · ·

n
While this is the natural decomposition to describe quantum many-body systems in
one spatial dimension (with open boundary conditions), it is essentially absent in
mathematics. The minimal number of terms for the ‘line decomposition’ is called
the operator Schmidt rank, and it can be much smaller than the tensor rank.

Or the parts of v could be connected ‘in a circle’,

v =
rX

↵1,↵2,...,↵n=1

a↵n,↵1
⌦ b↵1,↵2

⌦ . . .⌦ z↵n�1,↵n

represented as

4



1. From the whole to the parts

1

2
3

n� 1
n · · ·

This decomposition would be relevant for the description of one-dimensional quan-
tum many-body systems with periodic boundary conditions, and it is unclear what
its minimal number of terms is called, and how it relates to the ranks of the other
decompositions.

Or v could be decomposed as

v =
rX

↵,� ,�=1

a↵ ⌦ b↵,� ⌦ c� ⌦ d� ,� ⌦ e� (1.3)

represented as

1 2

3

4 5

Again it is unclear what the minimal number of terms r is called, and how it relates
to the other examples.

Or, if v were bipartite (n= 2), its parts could be connected by a double edge,

v =
rX

↵,�=1

a↵,� ⌦ b↵,� (1.4)

represented as

1 2

Such decompositions are important for positive decompositions with invariance
(Q3), as we will see later.

After these preparatory examples, we can address Q1: How do the parts form
the whole? P1 provides a framework to put all such decompositions, and more,
under one umbrella given by a weighted simplicial complex ⌦. The central idea is
that the parts, i.e. individual vector spaces, be associated to the vertices of ⌦, and the
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1. From the whole to the parts

the summation indices be associated to the maximal facets of ⌦— we have been using
this framework in the examples and representations above. A weighted simplicial
complex is a "well-behaved" weighted hypergraph. That is, given a set of vertices
V , the facets F are elements of its power set }(V )—for example, the simplex of
page 4 is described by a facet with vertices {1,2, 3}. Since the simplicial complex
is weighted, these facets can have multiplicity—for example, in the double edge of
page 5, the facet {1, 2} has multiplicity 2.

Moreover, for every simplicial complex ⌦, the minimal number of terms in the
⌦ decomposition defines the rank⌦. The tensor rank decomposition corresponds to
the case when ⌦ has a full simplex, i.e. a facet containing all vertices, the circle
decomposition to the case when ⌦ is the circle graph, the decomposition of (1.3) to
⌦ being the hypergraph of page 5, and the double edge decomposition to the case
when ⌦ consists of two vertices and a double edge.

What can we do with this framework? We can put the knowledge coming from
mathematics (mainly concerning the tensor rank or its symmetric version) and that
of quantum many-body systems (mainly concerning the operator Schmidt rank or
its translationally invariant version) under one umbrella, and compare ranks and
transfer results (as done in P1). More generally, we can study questions such as Q2
and Q3, as we will do below. But let us first consider the special case of two parts.

The case of two parts

One final remark: If v only has two parts, this framework is unnecessary (apart
from the double edge case, i.e. the multiplicity of the edge, which will be relevant
for Q3). In the bipartite case, the minimal number of terms—the rank—fully char-
acterises the dependence of the whole on its parts, in the sense that v is a sterile
concatenation of its parts if and only if the rank is 1.1 The rank is easy to compute,
and it is impossible to exaggerate its importance across the natural sciences and
mathematics. But the simplicity of the bipartite case is misleading, and it may be
an accident of the number two. For three parts it is no longer true that v is a sterile
concatenation of all of its parts if and only if the tensor rank is 1. Other examples
where switching from 2 to 3 entails a jump in complexity include the famous 2SAT
versus 3SAT problems—the former can be solved in polynomial time, whereas the
latter is NP-complete.2

1The rank is a very non-smooth measure of this fact, as it can grow arbitrarily by letting the parts
interacts a tiny bit—an ". This may partly explain the answer to Q4.

2NP is the class of decision problems that can be solved in polynomial time by a non-deterministic
Turing machine. NP-complete means that the problem is in NP, and that it admits a polynomial-time
reduction from any other problem in NP.
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1. From the whole to the parts

1.2 If the whole is invariant, are the parts invariant too?

First of all, what does it mean for the whole to be invariant? We say that v is G
invariant (where G is a group) if gv = v for all elements g in G, and gv is the
permutation of some parts in v. If G is full permutation group Sn, to say that v is
G invariant is to say that v be fully symmetric or permutationally invariant. On the
other hand, if G is the cyclic group Cn, to say that v is G invariant is to say that
v be translationally invariant. Note that this is an “external symmetry” of v, as it
permutes its parts, and does not refer to the internal symmetries of the elements of
v, e.g. that they be SU(2) or Z2 symmetric. These external symmetries are the only
symmetries we will study here.

Now, what does it mean for the parts to be invariant? It means that that the parts
contain a ‘certificate’ of this invariance, i.e. that each local tensor is G invariant. For
example, the decomposition

v =
rX

↵=1

a↵ ⌦ a↵ ⌦ . . .⌦ a↵ (1.5)

is Sn invariant—if v admits this decomposition, then v is Sn invariant, because any
permutation of the above expression leads to itself. (The minimal number such r is
called the symmetric tensor rank). Or the decomposition

v =
rX

↵=1

a↵1,↵2
⌦ a↵2,↵3

⌦ . . .⌦ a↵n,↵1
(1.6)

is Cn invariant, as any cyclic permutation leaves it unchanged. More generally, in a
G invariant decomposition, the term v[i]� at site i must equal the term v[gi]

g�1�
at site

gi, where the summation index has changed from � to g�1� , and the part index has
also changed from i to gi. If all elements in the decomposition satisfy this property,
we say that the parts are G invariant. This gives rise to an (⌦, G)-decomposition
(whose formal definition can be found in page 10 of P1). The bottom line is that, in
an (⌦, G)-decomposition, the elementary tensors satisfy some symmetry conditions.

Now, by construction, if v admits an (⌦, G)-decomposition, then v is G invariant.
Q2 (and the main question considered in P1) is the reverse one:

If v is G-invariant, does it admit an (⌦, G) decomposition?

The answer is: Yes, if G acts freely on ⌦ (Theorem 13 of P1). Moreover, the multi-
plicity of the facets of ⌦ can always be increased to satisfy this condition (Proposi-
tion 7 of P1). In other words: we give a sufficient condition for the existence of an
(⌦, G)-decomposition, namely the freeness of the action of G on ⌦, and show that
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1. From the whole to the parts

this condition can always be satisfied by increasing the multiplicity of the facets.
(Freeness is given in Definition 4 of P1).

Our result generalises the symmetric tensor rank decomposition (considered
in mathematics) or the translationally invariant operator Schmidt decompositions
(used to describe chains of quantum spins). It also allows to compare the (⌦, G)
ranks if the group changes (Section 4.2 of P1) or if the simplicial complex changes
(Section 4.3 of P1). For example, we show that the symmetric tensor rank is the
largest of the (⌦, G) ranks. Additionally, it lets us address Q3 by combining invari-
ance and positivity, as we will now see.

1.3 If the whole is positive, are the parts positive too?

Analogously to Q2, let us start by asking: What does it mean that the whole is posi-
tive? It means that v is in a certain cone—typically, the cone of positive semidefinite
matrices, or the cone of nonnegative tensors. And what does it mean that the parts
are positive? It can mean three things:

(i) In the separable case, it means that the parts are in the same cone as v.

(ii) In the purification case, it consists of a decomposition of a certificate that v
is in that cone. For example, if v is in the cone of the positive semidefinite
matrices, the purification is a decomposition of A, where v = A†A.3

(iii) In the quantum square root case, it consists of a decomposition of a Hermitian
certificate that v is in that cone. For example, if v is in the cone of the positive
semidefinite matrices, the quantum square root is a decomposition of A, where
v = A2.

More formally:

(i) A separable (⌦, G) decomposition is an (⌦, G) decomposition where every v[i]�
is positive semidefinite. The minimal number of terms is called the (⌦, G)
separable rank, denoted sep-rank(⌦,G).

(ii) An (⌦, G) purification of v is an (⌦, G) decomposition of L where v = L† L.
The minimal number of terms is called the (⌦, G) purification rank, denoted
puri-rank(⌦,G).

(iii) An (⌦, G) quantum square root of v is an (⌦, G) decomposition of L where
v = L2. The minimal number of terms is called the (⌦, G) quantum square
root rank, denoted q-sqrt-rank(⌦,G).

3For the mathematician: † denotes complex conjugate transpose, in mathematics usually denoted ⇤.
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1. From the whole to the parts

Fig. 1.2: Positivity gives rise to the notion of convexity, which interacts with the multiplicity of systems
in a surprising way. (Lithograph by M. C. Escher).

Now we can address Q3, together with invariance:

If v is G-invariant and positive, when does it admit each of the three positive (⌦, G)
decompositions?

The short answer is that v will generally admit each of the three positive invariant
decompositions, but generally for a very large prize. That is, there are separations
among each of these ranks. We know this because in the very special case in which
v just has two parts, the above decompositions correspond to the nonnegative fac-
torisation, the psd factorisation and the square root factorisation, respectively, and
there are separations among these already. In plain words, what happens is that
cones interact in a very rich way with the multiplicity of systems (Fig. 1.2), and this
is already the case for the classical (i.e. commutative) and bipartite case. Let us
explain this in more detail for the bipartite case.

Correspondence with matrix decompositions

Our framework, and in particular our three definitions of positivity of page
8, generalise other well-known decompositions. Specifically, in the simplest non-
trivial case, when the simplicial complex ⌦ consists of two vertices sharing an
edge, our decompositions specialise to the well-studied non-negative [CR93], pos-
itive semidefinite [FGP+15], completely positive [BSM03] and completely positive
semidefinite transposed decompositions P2 of matrices. Let us explain this.

9



1. From the whole to the parts

For matrices, there are two main notions of positivity. The first is that M be
nonnegative, meaning entrywise nonnegative. This notion of positivity (or nonneg-
ativity) is in essence the same as that of a nonnegative vector. The second is that M
be positive semidefinite, namely diagonalisable and with nonnegative eigenvalues.
M could thus be real and symmetric, or Hermitian—in either case with nonnegative
eigenvalues. For the quantum case the latter is the important one. This notion of
positivity is inherent to a matrix—the matrix itself can have complex entries, but its
eigenvalues must be nonnegative.

For a matrix M , Q3 becomes:

If M has some notion of positivity, can M be decomposed so that it preserves this
notion of positivity?

If M is nonnegative, the nonnegative factorisation is defined as

M = AB where A and B are nonnegative (1.7)

and the nonnegative rank is the minimal number of columns of A, denoted nn-rank
(or rank+). A noncommutative version of the nonnegative factorisation is the posi-
tive semidefinite (psd) factorisation, which is defined as

Mi, j = tr(AiBj) where all Ai and Bj are positive semidefinite. (1.8)

The psd rank is defined as the minimal size of all Ais and Bjs that satisfy (1.8).
(Note that there need to be as many Ais (Bjs) as the number of rows (columns)
of M , so this cannot define a rank.) Usually these psd matrices are defined in the
reals [FMP+12, FGP+15] (i.e. they are real symmetric matrices with nonnegative
eigenvalues), although for our connection the complex case is the relevant one.
Since in the psd factorisation we could choose all Ai and Bj to be diagonal, and we
would recover a nonnegative factorisation, it follows that it is harder to decompose
with nonnegative numbers than with real numbers (rank nn-rank), that noncom-
mutativity helps (psd-rank  nn-rank), and that it does not get smaller than the
rank.4

Why is this interesting? Because the nonnegative rank and the psd rank are much
more expensive than the rank. In plain words, negative numbers allow for mas-
sive shortcuts in a finite set of sums (even if the result of these sums is positive).
Formally, there is a separation between each of these ranks: there is a sequence
of matrices Mn (whose size increases with n) such that rank(Mn) is bounded, but

4The precise inequality is 1
2

p
1+ 8rank(M)� 1

2  psd-rankR(M) nn-rank(M).
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1. From the whole to the parts

minimal factorisation symmetric factorisation

nonnegative factorisation cp factorisation

psd factorisation cpsd factorisation

symmetric

nonnegative nonnegative

symmetric

non-commutative non-commutative
symmetric

Fig. 1.3: Existing factorisations of matrices, including symmetry (on the right column). In the top row,
the factorisation does not impose any positivity condition on the local terms. In the middle row, the
factorisation demands that the local matrices be nonnegative, whereas in the bottom row, it asks for a
non-commutative version of nonnegativity, namely that of Eq. (1.8). Each factorisation has an associated
rank; that of the minimal factorisation is the usual rank.

nn-rank(Mn) diverges. This means that rank cannot be upper bounded by a func-
tion of nn-rank exclusively, and we write rank⌧ nn-rank. The same is true for the
rank and psd rank, rank⌧ psd-rank, and for the psd rank and nonnegative rank,
psd-rank⌧ nn-rank [GPT13]. So there are separations everywhere.

Let us now add symmetry of M as a further ingredient, which for M a matrix just
means that M be symmetric (i.e. M = M t if real, and M = M† if complex). The three
decompositions above in the symmetric case are, first, the symmetric factorisation,
defined as

M = AAt where A is complex (1.9)

where the minimal number of columns of A is the symmetric rank. Second, the cp
factorisation (standing for completely positive), defined as

M = AAt where A is nonnegative (1.10)

and the minimal number of columns of A is the cp rank. And third, the cpsd factori-
sation (standing for completely positive semidefinite), defined as

Mi, j = tr(AiAj) where Ai is positive semidefinite (1.11)

and the minimal size of all Ai ’s is the cpsd rank (see Fig. 1.3). So ‘completely’ here
means ‘symmetric’.

Now, our framework of (⌦, G) decompositions, with the notions of positivity
of page 8, provides a non-commutative generalisation of the six decompositions of
Fig. 1.3. To see this, we now consider M to be a bipartite operator (instead of a
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1. From the whole to the parts

bipartite matrix), i.e. M 2 Md1
⌦Md2

, where Md is the space of d ⇥ d complex
matrices. The operator Schmidt decomposition of M is defined as

M =
rX

↵=1

A↵ ⌦ B↵ (1.12)

and the minimal such r is the operator Schmidt rank. The separable decomposition
of M is defined as

M =
rX

↵=1

�↵ ⌦⌧↵ where �↵,⌧↵ are positive semidefinite (1.13)

where the minimal such r is the separable rank. (This only exists if M is in the
convex cone of the Cartesian product of the cones of positive semidefinite matrices,
i.e. if M is separable). The local purification of M is defined as

M = LL†, where L =
rX

↵=1

A↵ ⌦ B↵ (1.14)

where L need not be a square matrix,5 and the minimal such r is the purification
rank. The quantum square root of M is

M = L2 where L =
rX

↵=1

A↵ ⌦ B↵ (1.15)

and the q-sqrt-rank is the operator Schmidt rank of L.
If M is additionally symmetric, i.e. invariant under the permutation of parts 1

and 2, we have the t.i. operator Schmidt decomposition (where t.i. stands for trans-
lationally invariant), which is given by

M =
rX

↵=1

A↵ ⌦ A↵ (1.16)

and the minimal such r is the t.i. operator Schmidt rank. The t.i. separable decom-
position is given by

M =
rX

↵=1

�↵ ⌦�↵ where �↵ is positive semidefinite (1.17)

5For the physicists: this the same as a purification M = traux| ih |. The sum over auxiliary indices
aux becomes the internal sum in the matrix multiplication of LL† in (1.14).
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1. From the whole to the parts

operator Schmidt decomposition t.i. operator Schmidt decomposition

separable decomposition t.i. separable decomposition

local purification t.i. local purification

symmetric

nonnegative nonnegative

symmetric

non-commutative non-commutative
symmetric

Fig. 1.4: Our non-commutative generalisation of Fig. 1.3, concerning factorisations of bipartite operators
(instead of matrices), without and with symmetry (left versus right hand side). The top row contains
the factorisation without any certificate of positivity in the parts. The middle row contains the separable
decomposition, which essentially imposes nonnegativity. The bottom row contains a non-commutative
version of positivity, namely a purification, where the parts contain a certificate of positivity in a non-
trivial way. Just one detail is not matching: the t.i. local purification generalises the cpsd factorisation
with an additional transpose, which we term the cpsdt decomposition (see P5 and P1 for details).

and the minimal such r is the ti-separable rank. And the t.i. local purification is

M = AA† where A=
rX

↵=1

B↵ ⌦ B↵ (1.18)

and the minimal such r is the t.i. purification rank. These six decompositions for a
bipartite operator M are summarised in Fig. 1.4.

What we show in P1 (and partially in P5) is that, if M is a bipartite operator
which is diagonal in the computational basis, then Fig. 1.4 becomes Fig. 1.3. In
words, this says that our generalisation is sensible. More formally, if M = diag(N)
where N is a nonnegative matrix and diag(N) rearranges the entries of N into a
diagonal, the factorisations of the psd matrix M coincide with the factorisations of
the nonnegative matrix N , up to an extra transpose in the cpsd factorisation (giving
rise to the cpsdt factorisation; see Table 1.1).

Since there is a separation between rank, nonnegative rank and psd rank (i.e.
the left column of Fig. 1.3), from the correspondence of Table 1.1 it follows that
there is a separation between the operator Schmidt rank, the purification rank and
the separable rank (i.e. the left column of Fig. 1.4). In symbols, osr⌧ puri-rank⌧
sep-rank. (The former separation was a central result of [DSPGC13]).

Finally, the correspondence of Table 1.1 also inspired us to generalise the results
for matrices rank two (explained, e.g., in [FGP+15]) to operators with operator
Schmidt rank two in P4, summarised in Table 1.2. This hopefully illustrates the
usefulness of our generalisation.
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1. From the whole to the parts

Decomposition of M = diag(N) Decomposition of N
operator Schmidt decomposition minimal factorisation

separable decomposition nonnegative factorisation
local purification complex psd factorisation

t.i. operator Schmidt decomposition symmetric factorisation
t.i. separable decomposition cp factorisation

t.i. local purification complex cpsdt factorisation

Tab. 1.1: If a psd matrix M is diagonal in the computational basis, M = diag(N) where N is the nonneg-
ative matrix containing the diagonal of M , then the decompositions of M on the left hand side are the
same as the decompositions of N on the right hand side P5, except for an additional transpose in the
cpsd factorisation.

Nonnegative matrix M rank(M)
1 Trivial (all ranks the same)
2 nn-rank= psd-rank= 2
3 nn-rank and psd-rank can be unbounded

Positive semidefinite matrix ⇢ osr(⇢)
1 Product state (all ranks the same)
2 Separable, and sep-rank= puri-rank= 2
3 puri-rank and sep-rank can be unbounded

Tab. 1.2: The case of rank 1 is trivial, of rank 2 is easy and fully characterised, and of rank 3 is as
hard as the general case, i.e. it already shows separations. This is true both for a nonnegative matrix M
[FGP+15] and for a bipartite positive semidefinite matrix ⇢, as we showed in P4.

1.4 And in the approximate case?

Does the answer to Q3 change if the parts only need to reproduce the whole up
to some "? P2 studies (⌦, G) decompositions with positivity in the approximate
case (Fig. 1.5), where the notion of approximation is given by "-balls around the
elements, in some norm (Schatten p-norm or `p norm). For example, we define

rank"(⌦,G)(M) = min
N2B"(M)

rank(⌦,G)(N), (1.19)

where B"(M) is the ball around M measured in the given norm, and similarly for the
other cases, giving rise to sep-rank"(⌦,G), puri-rank"(⌦,G) and q-sqrt-rank"(⌦,G). In fact
every such approximate rank has an additional superindex p indicating the Schatten
p-norm in which the distance in the ball B" is measured, or `p if the distance is
measured in `p norm, as the upper bounds on these approximate ranks will depend
on the norm.

The central result of P2 is that essentially all separations among ranks disappear
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1. From the whole to the parts

Fig. 1.5: The interaction of positivity (convexity) and the multiplicity of systems with a finite resolution
(i.e. with " balls) is very different than in the exact case, as many separations between ranks disappear,
as we showed in P2. So the answer to Q4 is very different to that of Q3. (Compare with Fig. 1.2).

in the approximate case (Corollary 26 of P2). In other words, if the parts need only
represent the whole approximately, the cost can be much lower. To prove the result,
we leverage the recent approximate Carathéodory Theorem [Iva19], which shows
that every element in a convex hull can be approximately represented by using a
number of extremal points which is independent of the dimension of the ambient
vector space, and only depends on the error. This leads to our central technical
result (Theorem 22 of P2).

It is worth mentioning two caveats to the general results of P2. The first is that
our results only hold for certain ranges of norms, namely 1 < p  4/3, p = 2 or
4  p <1. We do not know if they can be extended to the missing ranges of p.
In particular, at the moment they do not hold for p = 1, i.e. the trace norm, which
is the relevant one for quantum mechanics. The second caveat is that the upper
bounds on the " ranks often involve a "gauge function" (called µp⇢ in P2), which is
needed in order to consider a convex set, instead of just a convex cone, and which
is difficult to compute. Moreover, our results do not exploit the tensor structure of v
(they only use that v be in a cone, and then the general tensor rank decomposition),
so there is room for improvement.

15



1. From the whole to the parts

1.5 What about other worlds with the same parts–whole rela-
tion?

While the framework of (⌦, G)-decompositions is inspired by tensors—in particular,
by the description of quantum many-body systems—, it applies to any tensor prod-
uct structure. In P3, we apply it to real multivariate polynomials. These are objects
in the tensor product space of polynomials in each of their variables,

P := R[x[1],x[2], . . . ,x[n]]⇠= R[x[1]]⌦R[x[2]]⌦ · · ·⌦R[x[n]],

where ⌦ denotes the algebraic tensor product and x[i] a collection of variables
x [i]1 , . . . x [i]mi

. We translate Q1, Q2 and Q3 to, respectively:

(1) Every polynomial p 2 P can be expressed as a finite sum of “elementary
constituents”

p[1](x[1]) · p[2](x[2]) · · · p[n](x[n]),

but how are the summation indices arranged?

(2) If p is symmetric under the exchange of, say, systems [i] and [ j], when can
this symmetry be reflected in the decomposition, and at what price?

(3) If p is positive (for some notion of positivity), when can this positivity be
reflected in the decomposition, and at what price?

Our framework solves these three questions in the following way—in particular
applied to polynomials:

(1) The summation structure is described by a weighted simplicial complex ⌦, so
that every system i is associated to a vertex of ⌦, and every summation index
to a facet of ⌦. For example, the indices can be arranged in a circle,

p =
rX

↵1,...,↵n=1

p[1]↵1,↵2
(x[1]) · p[2]↵2,↵3

(x[2]) · · · p[n]↵n,↵1
(x[n]). (1.20)

or with a single index,

p =
rX

↵=1

p[1]↵ (x
[1]) · p[2]↵ (x[2]) · · · p[n]↵ (x[n]). (1.21)

(2) By definition, an (⌦, G)-decomposition of a polynomial contains a certificate
of invariance under the group G. We characterise which G-invariant polyno-
mials admit an (⌦, G)-decomposition.
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1. From the whole to the parts

Our framework models symmetries as follows: we have a group G acting
on the set {1, . . . , n}, and the induced action on the polynomial space P is
obtained by permuting system [i] to [gi],

g : x[i] 7! gx[i] := x[gi].

A polynomial is G-invariant if it is invariant with respect to all such permuta-
tions g 2 G, and we want to make this invariance explicit in the decomposi-
tion of p. For example, the following decomposition

p =
rX

↵1,...,↵n=1

p↵1,↵2
(x[1]) · p↵2,↵3

(x[2]) · · · p↵n,↵1
(x[n])

makes explicit that p is invariant under the cyclic group, x[i] 7! x[i+1], and

p =
rX

↵=1

p↵(x[1]) · p↵(x[2]) · · · p↵(x[n])

makes explicit that p is invariant under the full symmetry group. In our
framework, the former corresponds to the circle with the cyclic group, and
the minimal number of terms is the t.i. operator Schmidt rank, and the latter
to the symmetric tensor decomposition, and the minimal number of terms is
the symmetric tensor rank [CGLM08, Shi18] (cf. (2)).

(3) By definition, a separable or sum-of-squares (sos) (⌦, G)-decomposition con-
tains a certificate of invariance and of membership in the separable or sos
cone, respectively. We characterise which separable or sos polynomials admit
such decompositions.

Our contributions to the description of multivariate polynomials can be sum-
marised as follows:

• We define an (⌦, G) decomposition of a polynomial, as well as separable- and
sum of squares (⌦, G) decomposition, provide existence theorems of invariant
decompositions (Theorem 32 of P3), inequalities between the ranks (Propo-
sition 39) and separations between them (Corollary 45 of P3).

• We show that the rank separations disappear in the approximate case (Theo-
rem 49 of P3).

• We show that a polynomial problem is undecidable by linking it to a positivity
problem of Matrix Product Operators [DCC+16] (Theorem 51 of P3).
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1. From the whole to the parts

It is worth mentioning that we are currently studying approximate tensor de-
compositions from the perspective of border ranks [DKN22], where tensor decompo-
sitions are again considered within an approximation error " > 0, which is however
not fixed but tends to 0. Naively, one would expect that arbitrarily close approxima-
tions become (sooner or later) equal to the exact description. While this is true for
many matrix factorizations (including the standard matrix rank or positive factor-
izations [FGP+15]), it is false for tensors [LQY11, CVZ19], leading to the so-called
border rank phenomenon. We are currently generalizing several border rank results
to ⌦ factorisations, also including invariance and positivity.

1.6 Given some shadows of the whole, is the whole positive?

In many cases, the whole is unassailable, because it lives in an exponentially big
space. In this context, it is natural to assume that we only have access to some
shadows thereof, or ‘traces’ of its existence, which in our case means a few moments.
The question is then:

Given a few moments of a Hermitian matrix, what can we assert about its positivity?

More specifically, can we say at least and at most how far it is from the cone of
positive semidefinite matrices?

This question is natural if the whole has a tensor structure with few matrices in
each part, that is, if some of its ⌦ ranks is small, for in this case the moments are
easily computed whereas a diagonalisation of M is out of reach.

This is the question we embark to investigate in P6. This work sheds some
light on the interaction between the cones, i.e. the positivity structure, and the
multiplicity of systems—the ‘universes’ of the Prologue.

Let us start by motivating the assumption that we only be able to see some
‘shadows’ of the whole. The problem starts with the simple but far-reaching obser-
vation that the dimension of V = V1 ⌦ . . .⌦ Vn be the product of the dimensions of
each Vi , so it grows exponentially with n. This is dramatic for the description of
quantum many-body systems, and is the origin of the program of tensor networks
[CPGSV21, Oru19], whose goal is to develop scalable descriptions of these systems.
In the tensor network paradigm, it is natural to use a few matrices for each local
Hilbert space Vi . For example, the state of the system in one spatial dimension is
described by

M =
rX

j1,..., jn=1

A[1]j1
⌦ A[2]j1, j2

⌦ · · ·⌦ A[n]jn�1

where each local matrix is Hermitian (this is the decomposition of (1.2)), but not
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1. From the whole to the parts

necessarily positive semidefinite. Yet, M must be positive semidefinite to describe
a quantum state. While there is a way of imposing positivity in the local matrices,
resulting in the local purification form (page 8), this generally comes at the price
of a very large increase in the number of matrices, i.e. there is a separation among
the two decompositions [DSPGC13], as we explained in Section 1.3. In the case of
arbitrarily many parts (i.e. arbitrarily large n), the problem becomes undecidable
[DCC+16], and its bounded version NP-hard [KGE14].

In the context of free spectrahedra, it is also natural to assume that we have
access to a few moments of a large Hermitian matrix (cf. page iv and P6). That is,
we assume that M can be expressed as

M =
rX

j=1

A[1]j ⌦ · · ·⌦ A[n]j

where each A[i]j is Hermitian and of reasonably small dimension. (Note that this
is the tensor rank decomposition of (1.1).) Note also that the relation between
positivity and the multiplicity of systems is very simple if r = 1: M is positive
semidefinite if and only if each local matrix A[i] is either positive semidefinite or
negative semidefinite, and the number of negative semidefinite matrices is even.
But for r > 1 it is unclear whether any simple criterion exists at all, and the separa-
tions explained in Section 1.3 suggest that this is not the case—instead, we should
imagine a rich landscape between the cones and the universes, as that of Fig. 1.2.

In summary, in several contexts the whole is a Hermitian operator M on a Hilbert
space whose dimension is so large that it is impossible to write down all matrix
entries in an orthonormal basis. Moreover, it is natural to assume that we only have
access to a few moments of M . How does one determine whether such M is positive
semidefinite? In P6 we approach this problem by deriving asymptotically optimal
bounds to the distance to the positive semidefinite cone in Schatten p-norm for all
integer p 2 [1,1), assuming that we know the moments tr(M k) up to a certain
order k = 1, . . . , m.

More specifically, we address the following questions:

(i) Given the first m normalized moments

tr(M k) =
1
s

tr(M)

where s is the size of the matrix, for k = 1, . . . , m, of a Hermitian operator M
with ||M ||1  1, can one show that M is not positive semidefinite?

(ii) Given these moments and a p 2 [1,1), can one optimally bound the distance
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1. From the whole to the parts

of M to the positive semidefinite cone from above and below in Schatten p-
norm?

Since both the moments and the positive semidefiniteness of a Hermitian operator
M are characterized by the distribution of eigenvalues, we are secretly concerned
with a version of the truncated Hausdorff moment problem, as explained in P6.

The main idea to address these questions is, first, to note that the distance to
the cone of positive semidefinite matrices is given by the norm of the negative part
of M , and, second, to approximate this norm with the few moments. Namely, a
Hermitian M can be expressed as

M = M+ �M�

where M� = f1(M), where f1(x) is the absolute value of the negative part of x , and
0 elsewhere, and M+ is the difference between M and M�. The distance from M to
the cone of positive semidefinite matrices (in Schatten p-norm) is, by definition,

dp(M) = inf
N>0
||M � N ||p

where N > 0 denotes that N be positive semidefinite. This distance is given pre-
cisely by the norm of the negative part of M (Lemma 1 of P6), namely

dp(M) = ||M�||p.

So, ideally, we would like to compute dp(M), but we only have access to a few
moments of M , so we instead estimate dp(M) as accurately as possible. Namely, we
consider the best upper and lower bounds to dp(M) that can be obtained from these
moments, and we provide three methods to compute these bounds and relaxations
thereof:

The sos polynomial method computes the upper and lower bounds to dp(M) by
solving a semidefinite program.

The Handelman method is a linear program relaxation, which uses another ansatz
for nonnegative polynomials on [0,1] to compute the upper and lower bounds
to dp(M).

The Chebyshev method is a relaxation not involving any optimization. The poly-
nomials are the Chebyshev polynomials (whose degree is at most m) that best
approximate the negative part function.
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1. From the whole to the parts

In P6 we investigate the analytical and numerical performance of these three
methods and present a number of example computations.

1.7 Which wholes can be divided into arbitrarily many parts?

This question means: Which states have a continuum limit? In P7, P8 and P9 we
address this question for Matrix Product States [PGVWC07, Vid03, FNW92] in the
following way.

We consider Matrix Product States (MPS), more particularly for families of trans-
lationally invariant MPS. These correspond to families of tensor decompositions
where, in the language of the previous questions, the simplicial complex is the cir-
cle graph and the symmetry group the cyclic group Cn. Namely, a family V (A) is
defined as

V (A) = {|VN (A)i}N2N
where

|VN (A)i=
dX

i1,...,iN=1

tr(Ai1 · · ·AiN )|i1, . . . , iN i

where A = {Ai
↵,�} with i = 1, . . . , d and ↵,� = 1, . . . D is a tensor with complex

entries. The goal is to characterise which families V (A) have a continuum limit
in terms of the mathematical properties of the tensor A. Moreover, if V (A) has a
continuum limit, we also want to specify it. Note that A provides a 0-dimensional
characterisation of the family, as it does not scale with the system size—we can
think of A as a grammar of V (A). (A grammar in the sense of formal languages, see
e.g. [SDD20] or [Koz97]).

In the pursuit of this goal, a crucial tool is the canonical form of MPS and its
associated fundamental theorem [CPGSV17], which relates different MPS repre-
sentations of a state. In words, this theorem says that, if A and B are in canonical
form, V (A) = V (B) if and only if A and B are related by a basis change common
to all physical indices. The crucial part of the theorem is the "only if", for it allows
to go from a global condition (V (A) = V (B)) to a local condition (how A and B
are related). This theorem fully characterises the freedom of the map A! V (A),
and gives us a firm handle on the characterisation of the family V (A) in terms of A.
For this reason, the canonical form and the fundamental theorem underpin many
of the analytical results derived through MPS, such as the celebrated classification
of symmetry-protected phases in one dimension [SPGC11] (see also [CGW11]).

Yet, the canonical form is only defined for MPS without non-trivial periods.
Specifically, it excludes translationally invariant MPS which are superpositions of
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states with non-trivial periodicity m > 1, such as the paradigmatic antiferromag-
netic state

|0,1, 0,1, . . .i+ |1, 0,1,0, . . .i

with period m = 2. Note that, after blocking m spins we obtain a translationally
invariant MPS in a trivial way, at which point the canonical form and the fundamen-
tal theorem can be applied. However, the local entanglement structure relating to
the non-trivial periodicity is lost in this procedure, and the physical properties of
the system can change radically (e.g., the antiferromagnet becomes a ferromagnet
when blocking 2 sites). More importantly for our purposes, the investigation of
which states can be fine-grained—the stepping stone on which the continuum limit
will be defined—does not allow for blocking of the sites.

In P7 we introduce a new standard form for MPS, the irreducible form, which is
defined for arbitrary MPS, including periodic states. We show that any tensor can
be transformed into a tensor in irreducible form describing the same MPS. We then
prove a fundamental theorem for MPS in irreducible form. In words, it says that
if two tensors in irreducible form give rise to the same MPS, they must be related
by a similarity transform, together with a matrix of phases. Slightly more formally,
given any A and B in irreducible form, V (A) = V (B) if and only if there is a unitary
Z and an invertible matrix Y such that ZAi = Y BiY �1 for all i, with [Z , Ai] = 0 and
V (A) = V (ZA).

As an application of this result, we provide an equivalence between the refine-
ment properties of a state and the divisibility properties of its transfer matrix. This
hinges on the very fruitful connection between MPS and quantum channels, i.e.
trace-preserving completely positive maps. This stems from the observation that,
given a tensor A, its transfer matrix

EA =
dX

i=1

Ai ⌦ Āi (1.22)

(where¯denotes complex conjugate) is a matrix representation of a completely pos-
itive map, whose Kraus operators are precisely Ai . This map can be made trace-
preserving too. The theory of quantum channels (notably exposed in the unpub-
lished notes [Wol11]) can be used to gain much insight into properties of A, as we
in fact do in P7.

In particular, given a tensor B, we say that V (B) can be p-refined if there exists
another tensor A and an isometry W : Cd ! (Cd)⌦p such that

|VpN (A)i=W⌦N |VN (B)i 8N .
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On the other hand, a trace-preserving completely positive map E is called p-divisible
if there is another trace-preserving completely map T such that E = T p, where the
latter denotes the p-fold application of the map (both definitions are provided in
P8). We show in P7 that if B is in irreducible form then these two concepts are the
same, i.e. V (B) can be p-refined if and only if its transfer matrix EB is p-divisible
(Theorem 17 of P7).

In P8 we determine which translationally invariant matrix product states have
a continuum limit, that is, which can be considered as discretized versions of states
defined in the continuum. Specifically, we say that V (B) has a continuum limit
if there is a p > 1 such that the procedure of p-refining ` times followed by the
blocking of n` 2 N of the resulting spins converges in `, as long as (n`/p`)`! 0 as
`!1. Here (n`/p`)` denotes the infinite sequence whose elements are n`/p` with
` 2 N. The main result of P8 (Theorem 1) is that, given V (B) with B in irreducible
form, the following statements are equivalent:

1. V (B) has a continuum limit.

2. EB is infinitely divisible.

3. There is a quantum channel P and a Liouvillian of Lindblad form L such that
EB = PeL , P2 = P, and P LP = P L.

Our contribution is the equivalence of 1. and 2., as the equivalence of 2. and 3.
was proven by Denisov [Den89] and Kholevo (usually spelled Holevo) [Kho87]. If
the projector is trivial, P = I , the corresponding transfer matrix eL coincides with
that of a translationally invariant continuous MPS [VC10, HCOV13], but if it is not,
P 6= I , the continuum limit cannot be represented by a continuous MPS. We will
address this question in P9.

We also say that V (A) has a coarse continuum limit if there is a V (B) and an
n 2 N such that V (A) is the n-refinement of V (B), and V (B) has a continuum limit.
It follows from the main theorem that V (A) has a coarse continuum limit if and only
if there exists an n 2 N such that En

A is infinitely divisible. The antiferromagnet, the
one-dimensional cluster state [RB01], and the AKLT state [AKLT87] are examples
of states with a coarse continuum limit but no continuum limit.

One surprising outcome of the characterisation of P8 is precisely the fact that
continuous MPS (cMPS) do not capture all continuum limits of MPS. The missing
element is the projector P in the transfer matrix. In P9 we provide a generalized
ansatz of cMPS that is capable of expressing the continuum limit of any MPS. It
consists of a sum of cMPS with different boundary conditions, each attached to an
ancilla state. This ansatz can be interpreted as the concatenation of a state which
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is at the closure of the set of cMPS together with a standard cMPS. The first can be
seen as a cMPS in the thermodynamic limit, or with matrices of unbounded norm.
We provide several examples and discuss the result.

1.8 Which composition rules preserve the order of the parts?

If the parts are in a cone, they build a partial order (usually denoted with the symbol
6), which is ultimately inherited from the order of real numbers. Yet, in composing
the parts, this order is generally not preserved. So we consider the question: Which
composition rules preserve the order relation of the parts? This question is relevant
for recent approaches to (quantum) natural language processing, which represent
the meaning of words by positive semidefinite matrices, and hyponymy by the 6
relation, as we will now see.

Positive semidefinite matrices have a partial order defined on them, sometimes
called the Löwner order, so that

A > B if and only if A� B > 0

where the latter symbol means positive semidefinite (and we slightly abuse notation
by using the same symbol for A > B). We also write C 6 0 if and only if �C > 0. In
some approaches to compositional distributional semantics, the meaning of a word
is represented by a positive semidefinite matrix [BCLM18], and the Löwner order is
used to represent the hyponymy relation. The hyponomy relation is the relation of
entailment—for example, a cat is a mammal, so cat is a hyponym of mammal (and
mammal is a hypernym of cat). Similarly, for verbs, climb entails move, so climb
is a hyponym of move. This relation is represented with the Löwner order, so that
e.g.

πcat∫6 πmammal∫

where πcat∫ denotes the positive semidefinite matrix representing the meaning of
cat. Similarly, πclimb∫6 πmove∫.

In order to obtain the meaning of phrases and sentences, the meaning of its
words is combined, for example, with composition rules like Fuzz and Phaser [CM20]
(a.k.a. KMult and BMult [Lew19]; see [CSC10] for a background to this approach,
and [PKCS15] for the extension to positive semidefinite matrices). Yet, these rules
do not preserve hyponymy, that is, from

πcat∫6 πmammal∫ and πclimb∫6 πmove∫
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2. Quantum magic squares

it does not follow that

πcats climb∫6 πmammals move∫.

In P10, we introduce a generic way of composing the positive semidefinite ma-
trices corresponding to words which preserves hyponymy. Specifically, we intro-
duce a composition rule called Compression, Compr, which is itself a completely
positive map, and is therefore linear, generally non-commutative, and it preserves
hyponymy. We give a number of proposals for the structure of Compr, based on spi-
ders, cups, and caps, and generate a range of composition rules (see pages 16–20
of P10). As a particular case, we recover the previously introduced Mult, Fuzz and
Phaser.

We test these rules on sentence entailment datasets from [KS16], and see some
improvements over the performance of Fuzz and Phaser. We estimate the parame-
ters of a simplified form of Compr based on entailment information from the afore-
mentioned datasets, and find that while the learnt operator does not consistently
outperform previously proposed mechanisms, it is competitive and has the potential
to improve the use of a less simplified version.

2 Quantum magic squares

A magic square is a square matrix with positive entries such that every row and
column sums to the same number (Fig. 1.6), and a doubly stochastic matrix is a
magic square with real nonnegative entries where every row and column sums to
1. For example, dividing every entry of Dürer’s magic square by 34 results in a dou-
bly stochastic matrix. So doubly stochastic matrices contain a discrete probability
measure in each row and each column.

It is well-known that the set of doubly stochastic matrices forms a polytope,
whose vertices are the permutation matrices, i.e. doubly stochastic matrices with
a single 1 in every row and column, and 0 elsewhere (that is, permutations of the
identity matrix). This is the content of the famous Birkhoff–von Neumann Theorem.

A quantum magic square is a quantum generalization of a doubly stochastic ma-
trix, where every number is promoted to a positive semidefinite matrix. So a quan-
tum magic square contains a quantum measurement (i.e. a positive operator valued
measurement, POVM) in every row and column (Definition 1 of P11). The normal-
isation conditions on the numbers (that they sum to 1) become the normalisation
of the POVM (that they sum to the identity matrix).

A quantum permutation matrix is a quantum generalization of a permutation
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2. Quantum magic squares

Fig. 1.6: (Left) The magic square on the façade of the Sagrada Família in Barcelona, where every row
and column adds to 33. (Right) The magic square in Albrecht Dürer’s lithograph Melencolia I, where
every row and column adds to 34.

matrix, where every 0 and 1 is promoted to an orthogonal projector (given that 0
and 1 are the only numbers that square to themselves). Thus, a quantum permu-
tation matrix contains a projective valued measurement (PVM) in every row and
column.

It is well-known that every POVM dilates to a PVM, by Naimark’s Dilation Theo-
rem. In words, every measurement can be ‘purified’, i.e. seen as part of a projective
measurement in a larger system. But does this also hold for a two-dimensional array
of POVMs? Namely,

Does every quantum magic square dilate to a quantum permutation matrix?

In other words: can every two-dimensional array of POVMs be dilated to a two-
dimensional array of PVMs?

This is the main question addressed in P11, and the answer is ‘no’—even in the
simplest case where the internal positive semidefinite matrices are 2⇥2. This means
that quantum magic squares do not admit the same kind of ‘easy’ characterisation
as classical magic squares, that is, what happens at level 1 of the universe of Fig. 2
is deceivingly simple compared to what happens at higher levels. There must exist
very strange (and thus very interesting) quantum magic squares. The proof relies
on techniques from free semialgebraic geometry alluded to in page iv. A high level
explanation of these results is provided in P13.

Ours is one contribution to the very lively subfield of quantum magic squares—
recently an absolutely maximally entangled state of 4 systems with 6 levels each has
been found [RBB+21] (see this very nice Quanta magazine article about it). Abso-
lutely maximally entangled states define a special kind of quantum magic square,
and it is at present unclear how the results of [RBB+21] relate to ours. Other recent
very interesting developments include a quantum version of Sudoku [NP20].
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3. Shadows of infinity

Fig. 1.7: A map P is positive if it maps to cone of positive semidefinite matrices to itself, n-tensor stable
positive if P ⌦n is positive, and tensor stable positive if n-tensor stable positive for all n. Note that P ⌦n

acts on n copies of the original universe, and P ⌦n is positive if it preserves the cone on these n copies.

3 Shadows of infinity

A map P is positive if it maps the cone of positive semidefinite matrices to itself,
and it is tensor stable positive if P ⌦n is positive for all n [MHRW16] (Fig. 1.7).
More formally, let P :Md !Md be a linear map, whereMd is the space of d ⇥ d
matrices. This map is positive if P : PSDd ! PSDd , where PSDd is the cone of
positive semidefinite matrices of size d ⇥ d. P ⌦n is defined on the n-fold tensor
product ofMd ,

P ⌦n :Md ⌦ . . .⌦Md| {z }
n times

!Md ⌦ . . .⌦Md| {z }
n times

,

and it is positive if it maps the cone of positive semidefinite matrices on the domain
to itself,

P ⌦n : PSDdn ! PSDdn .

It is NP hard to decide whether a map is positive, and we conjecture that it is
undecidable to decide if a map is tensor stable positive (P12, [vdEKS+22]). We will
revisit this conjecture in a couple of lines.

Now, completely positive maps, possibly followed by transposition, are tensor
stable positive. These are the trivial tensor stable positive maps, whereas any non-
trivial example is called essential. The central question considered in P12 is:

Are there any essential tensor stable positive maps?

This question was introduced and studied (but not settled) in [MHRW16], and we
revisit it in P12 (but do not settle it either) by investigating it from two angles.
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Fig. 1.8: The hyperreals are an extension of the reals, very much so as the reals are an extension of the
rationals, and the rationals of the integers. Every real number, when considered as a hyperreal, contains
a ‘halo’ of infinitesimally close elements. The figure shows the halo of the number 0. This halo is trivial
in the reals—it is invisible, there is nothing in there—, but not in the hyperreals.

The first angle concerns undecidability. Consider the state

|�ni=
dX

i1,...,in=1

|i1, i2i ⌦ |i2, i3i ⌦ · · ·⌦ |in, i1i, (1.23)

where |ii denotes the i-th vector from the canonical orthonormal basis, and |il , il+1i
is shorthand for |ili ⌦ |il+1i. We show that, given P , it is undecidable whether
P ⌦n(|�nih�n|) is positive semidefinite for all n. We conjecture that, given P , it
is undecidable whether P ⌦n is a positive map for all n. We also show that if the
conjecture were true there would exist essential tensor stable positive maps as well
as bound entanglement with a negative partial transpose [MHRW16]. Note that
here undecidability is a proof technique, instead of an end in itself.

The second angle concerns the hypercomplex numbers, for which we first need
to define the hyperreals (Fig. 1.8). An integer is defined as an equivalence class of
pairs of naturals numbers (which subtract to that integer), a rational as an equiv-
alence class of pairs of integers (which give the same fraction), a real as an equiv-
alence class of Cauchy sequences of rationals (which converge to that real), and
a hyperreal as an equivalence class of sequences of real numbers, ⇤R = RN/ ⇠
[Gol98]. The equivalence ⇠ is given by a so-called ultrafilter, which tells which
elements of RN are equivalent to each other, and turns ⇤R into a field. In fact, ⇤R is
a complete ordered field, meaning that it also has a total order, and that it contains
its limits.

What is important for our purposes is that the reals are contained as a subfield
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Fig. 1.9: We consider quantum theory over the hypercomplex numbers, where we describe quantum
systems with matrices with hypercomplex entries (i.e. with a hyperreal and a hyperimaginary part). The
halos provided by these hypercomplex numbers give rise to a ‘glowing’ version of usual quantum theory.

in the hyperreals: any real r 2 R is embedded in the hyperreals as the equivalence
class of the sequence (r, r, r, r, . . .). The situation is thus parallel to that of naturals
being embedded in the integers, integers in the rationals, and rationals in the reals.

The hyperreals contain some fascinating objects6, such as infinitesimals, which
are smaller than than any positive real, yet larger than 0. For example, the equiv-
alence class of the sequence (1, 1/2, 1/3,1/4,1/5, . . .) is such an infinitesimal. The
infinitesimals around any hyperreal define its halo. The hyperreals also contain un-
limited numbers, which are larger than any natural, yet not infinity. For example,
the equivalence class of the sequence (1,2, 3,4, 5, . . .) is unlimited.

The hypercomplex ⇤C are the ‘complexification’ of the hyperreals, ⇤C =⇤ R+i⇤R,
where i is the imaginary unit. They are an extension of the complex numbers, and
they should not be confused with the also called hypercomplex numbers involving
quaternions.

In P12 we consider quantum theory over the hypercomplex, instead of the com-
plex (Fig. 1.9). This is a modification of quantum theory which, as far as we know,
had not been considered before, and given our findings, should be considered from
a foundational perspective, I believe.

In P12 we settle the main question regarding the existence of essential tensor
stable positive maps in the positive, but for the hypercomplex numbers. Namely,
we show that there exist essential tensor stable positive maps if the underlying field
is that of the hypercomplex, instead of the complex. From here it follows that there
exist undistillable quantum states with a negative partial transpose (NPT) over the
hypercomplex. In other words, the existence of NPT bound (i.e. undistillable) en-
tanglement is an open problem in quantum information (see e.g. [HRŻ20]), which

6The reals, the rationals, the integers and the naturals do too!
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Fig. 1.10: There exist undistillable NPT quantum states in the hypercomplex. This follows from the fact
that, in the hypercomplex, states with a positive partial transpose (PPT) glow so that they become NPT
but still remain undistillable (P12). ‘Glowing’ means that they have these undistillable NPT states in
their halo (see Fig. 1.9). This halo vanishes in the complex, so we cannot conclude anything about the
usual complex case.

can be solved over the hypercomplex, as P12 shows. These statements follow from
the fact that the halo of trivial tensor stable positive maps contains essential tensor
stable positive maps (Fig. 1.10). The halo becomes trivial when the hypercomplex
are replaced by the complex, so unfortunately our result does not allow to conclude
anything about the ‘usual’ situation.
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