Quantum Theory:
From the whole to the parts,

magic squares & shadows of infinity

The relation between quantum physics (events and their frequencies, to the left) and
quantum theory (to the right) can be imagined as in this artwork by Kumi Yamashita.
This Habilitation Thesis sheds light on some aspects of quantum theory: on going from
the whole to parts, on quantum magic squares, and on shadows of infinity.

Professorial Dissertation to obtain the Venia Docendi
at the Faculty for Computer Science, Mathematics and Physics
at the University of Innsbruck
in the Habilitation subject “Theoretische Physik - Theoretical Physics”
presented by Dr. Gemma De las Cuevas
Innsbruck, February 2022

Habilitationscrift zur Erlangung der Lehrbefugnis
fiir das Fach “Theoretische Physik - Theoretical Physics”
an der Fakultat fiir Mathematik, Informatik und Physik

der Leopold-Franzens-Universitit Innsbruck
vorgelegt von Dr. Gemma De las Cuevas
Innsbruck im Februar 2022


https://gemmadelascuevas.com
https://gemmadelascuevas.com

Prologue

This Habilitation concerns quantum theory, and I like to imagine its relation to
quantum physics with the artwork by Kumi Yamashita of Fig. 1. On the left we
have quantum physics, understood as experimental quantum physics, which con-
sists of events, potentially repeated, giving rise to relative frequencies of these
events. Which events are observed is of course all but accidental—it is guided by
quantum theory—but ultimately they are events. On the right we have the theory
of quantum physics, whose relation to the physical world is very mysterious to me.
That relation between the abstract and actual is particularly thorny in the case of
quantum theory, given the disagreement on the metaphysics of the theory—does
quantum theory tell us that we live in a multiverse, and that there are virtually
infinitely many copies of myself? Or do we "just" live in one non-local-realistic uni-
verse? And: how is it possible that we disagree on such transcendental matters?
While very important, these questions will be set aside in this Habilitation.

Quantum theory
Non-commutativity
. From the whole to the parts
Quantum physics The tensor product
Quantum magic squares
Positive elements
Shadows of infinity
Complex numbers

Fig. 1: Quantum theory (the abstract world) can be imagined to shed a very special light on the physical
world, namely give rise to surprising events. This Habilitation investigates the interplay of four aspects
of quantum theory—non-commutative spaces, the tensor product, the role of positive elements, and
the role of complex numbers—through "From the whole to the parts", "Quantum magic squares", and
"Shadows of infinity".

Instead, I would like to focus on some mathematical aspects of quantum theory,



of which I want to highlight four. The first is the fact that quantum systems are
described with non-commutative structures. Discovering non-commutativity can be
imagined as discovering a new universe (Fig. 2): Classical physics corresponds to
level 1 of this universe, whereas quantum physics corresponds to any level higher
than one. The level is to be understood as the internal dimension of the system. For
example, a qubit is a system at level 2, because it is represented by a 2 x 2 matrix,
whereas a qudit is a system at level d, because it is represented by a d x d matrix.
A classical system is represented by a 1 x 1 matrix, i.e. by a number—this would
describe a random classical variable. The need to represent the state of the system
by a matrix testifies to the non-commutative nature of the theory that we are trying
to highlight.

Quantum physics (levels >1)

<«—— Classical physics (level 1)

Fig. 2: Discovering quantum physics is like discovering a new universe.

The second aspect is the tensor product, which gives rise to a new compositional
universe (Fig. 3). Describing how to compose is as fundamental as describing single
systems, and I believe it is a misconception of reductionism to overestimate the
importance of single systems. In the case of quantum theory, much of the ‘magic’
and ‘mystery’ come from composing with the tensor product instead of the Cartesian
product. Namely, the joint system of two quantum systems (two ‘universes’, in our
running metaphor) is described by their tensor product. Physicists tend to imagine
the tensor product so that if we pick an orthonormal basis for the first universe,
for every element of this basis there is an entire second universe attached to it. A
more formal definition of the tensor product is fairly complicated, and invokes the
universal property of the tensor product in category theory.

The third aspect is that part of this universe is positive, and these positive ele-
ments play a distinguished role (Fig. 4). The positive elements form a cone—namely
the cone of positive semidefinite matrices—which is much harder to describe than
the underlying ‘universe’, which forms a vector space. In fact, the state of a quan-
tum system is described by a positive semidefinite matrix of trace 1, so for every
level of this universe we do not have a cone but a convex set. Now, these cones



Fig. 3: The tensor product gives rise to a new compositional universe.

interact in a very rich way with the compositional structure of the universes: the
tensor product of the cones is not the cone of the tensor product (because the tensor
product interacts nicely with vector spaces, not with cones), and the convex com-
bination of cones is not the cone of composite system system either (i.e., there are
entangled states). In this Habilitation we will explore this very fertile interaction
from various angles.

Fig. 4: The cone of positive elements play a distinguished role in quantum theory, because they are used
to describe quantum states.

The fourth aspect is the fact that this universe uses complex numbers (Fig. 5): It
has a real and an imaginary part, and so do its positive elements. The composition
mixes up the real and imaginary part in a ‘consistent’ way as far as the number of
parameters is concerned: A d x d complex positive semidefinite matrix has d? free
real parameters, and the composition of a quantum system at level d and one at
level s is described by a ds x ds matrix, which has (ds)? = d?s? real parameters. In
this Habilitation we will challenge this aspect by considering a hyperreal and a hy-
perimaginary part, and we will show that some long-standing problems in quantum
theory can be solved over the hypercomplex numbers.

More generally, in this Habilitation we investigate the interplay of these four
ingredients from three perspectives: First we will go from the whole to the parts,
from many different perspectives (Section 1), then we will study magic squares
and their quantum cousins (Section 2), and finally we will investigate shadows of
infinity in the problem of tensor stable positivity (Section 3).
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Fig. 5: This universe is complex—it has a real and an imaginary part—, and this interacts nicely with
the composition structure.

A faithful companion through our journey will be free semialgebraic geometry,
which often studies the same mathematical objects as quantum theory but from a
different perspective (Fig. 6). ‘Free’ means noncommutative because it is free of
the commutation relation, that is, it studies noncommutative versions of semialge-
braic sets. Since quantum information theory is a noncommutative generalisation
of classical information theory, ‘free’ is naturally linked to ‘quantum’. Moreover,
positivity (and convexity) play a very important role in both fields, since semialge-
braic geometry examines questions arising from nonnegativity, such as polynomial
inequalities, whereas positive elements play a distinguished role in quantum theory,
as we highlighted above.

While the two disciplines often study the same objects, they tend to do so from
different angles, and hence ask different questions. Generally speaking, free semi-
algebraic geometry tends to study the sets (their geometrical structure, character-
isation, etc), whereas quantum theory puts the emphasis on the elements of these
sets (because they correspond to quantum states). For example, in quantum the-
ory, given an element of a tensor product space one wants to know whether it is
positive semidefinite or entangled, and how this can be efficiently represented and
manipulated, whereas in free semialgebraic geometry one characterises the geom-
etry of the set of all such elements. I have had the pleasure to collaborate with my
colleague Tim Netzer in recent years—an expert on free semialgebraic geometry—,
and of exploring the richness of combining these two perspectives. This connection
to free semialgebraic geometry will be a thread seaming the various themes of this
Habilitation, and we have written an invitation to the intersection of both topics in
P13.
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https://www.uibk.ac.at/mathematik/personal/netzert/

Fig. 6: Free semialgebraic geometry and quantum information theory often look at similar landscapes
from different perspectives, as surveyed in P13 and depicted in the fantastic world by M. C. Escher.
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Chapter 1

Shedding some light on
Quantum Theory

This Habilitation investigates the interplay of four aspects of quantum theory (non-
commutativity, the tensor product, positive elements and complex numbers) from
three perspectives: From the whole to the parts (Section 1, based on P1, P2, P3,
P4, P5, P6, P7, P8, P9 and P10), quantum magic squares (Section 2, based on P11),
and shadows of infinity (Section 3, based on P12). In addition, P13 provides an
overview of some of these results in the form of an invitation to the topic.

1 From the whole to the parts

The relations between the whole and its parts are a ‘classical’ topic in metaphysics,
and, when constraied to the mathematical realm, concern the study of composi-
tionality —how objects compose and decompose. Composing is usually the ‘easy’
direction; it is the constructive direction. The inverse problem is decomposing,
which could be concerned, e.g., with which properties of the whole can be trans-
ferred to the parts. Two notes: First, in the abstract world, the only object whose
whole can be put in one-to-one correspondence with a proper part is infinity—this
is in fact a defining property of infinity. In our work we will only be concerned with
finite systems. The second note concerns the unique and very surprising relations
between the parts and the whole in quantum theory: in a maximally entangled
state, we have perfect knowledge of the whole and maximal lack of knowledge of
the parts. In our work, we investigate the relation between the parts and the whole
in a general way for vector spaces composed with the tensor product, with positivity
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cones playing a distinguished role. This setting includes the description of quantum

many-body systems as a special case, but also that of multivariate polynomials, as

we will see. We will be guided by the following questions:

Q1.

Q2.

Q3.

Q4.

Q5.

Q6.

How do the parts form the whole? (Section 1.1)

For a given whole, we will describe any decomposition using a weighted sim-
plicial complex Q. This includes the tensor rank decomposition and the linear
decomposition, but many more too.

If the whole is invariant, are the parts invariant too? (Section 1.2)

This initiates the study of which properties of the whole can be transferred
to the parts. To start with, we consider invariance under the permutation of
some parts, and ask whether there is an expression of the parts that certi-
fies this invariance. We give a sufficient condition for the existence of this
certificate.

If the whole is positive, are the parts positive too? (Section 1.3)

For several notions of positivity (i.e. several cones), we ask whether the parts
can contain a certificate that the whole is in a cone. The answer is, generally,
‘yes’ but at a very high price—where ‘price’ means rank, i.e. number of terms
in the decomposition. We will consider invariant and positive wholes, i.e. this
question combined with Q2. P1 contains the framework that addresses Q1,
Q2 and Q3.

What if the parts only approximate the whole? (Section 1.4)

Does the answer to Q2 and Q3 change if the parts give rise to a whole which
is e-close to the original one? Yes, it does: certifying positivity in the parts
can be much easier in the approximate case. This question is addressed in P2,
leveraging P1’s framework.

What about other worlds with the same parts-whole relation, such as multivari-
ate polynomials? (Section 1.5)

Since multivariate polynomials are also described by the tensor product of
vector spaces, we apply our entire framework—which is inspired by tensor
decompositions—to polynomials, and transfer many results. This question is
addressed in P3 (leveraging P1’s framework and P2’s results).

Given some shadows of the whole, is the whole positive? (Section 1.6)

By ‘shadows’ we mean a few moments of a matrix. So the question is: Given
a few moments tr(M*) for k = 1,...,m of a matrix M, can we tell at most
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Fig. 1.1: P1 provides a new framework to decompose objects of tensor product spaces in terms of their
parts, including invariance and positivity. P2 addresses the approximate case, and P3 applies the frame-
work to polynomials. This Gala of spheres, by Dali, is a remarkable composition of a whole (Gala’s bust),
or decomposition into some surprising parts.

Q7.

08.

and at least how far it is from the cone of positive semidefinite matrices? We
address this question in P6.

Which wholes can be divided into arbitrarily many parts? (Section 1.7)

Namely, which states have a continuum limit? We address this question for
Matrix Product States in P8, which requires a generalisation of the canonical
form and its fundamental theorem provided in P7. Since our results imply
that not every continuum limit of a Matrix Product State can be expressed as
a continuous Matrix Product State, we propose a generalisation of the latter
in P9.

Which composition rules preserve the order of the parts? (Section 1.8)

If the parts are in a cone, they build a partial order, but this relation is gen-
erally not preserved by the composition of the parts. In P10 we propose
a composition rule that preserves this relation. This is relevant for recent
approaches to (quantum) natural language processing, which represent the
meaning of words by positive semidefinite matrices, and hyponymy by the
partial order of positive semidefinite matrices. Our composition rule, thus,
preserves hyponymy.
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1.1 How do the parts form the whole?

If the parts are vector spaces V;,...V,, giving rise to the composite vector space
V=V, ®...9V,, and the whole is an element v € V, the question is:

How can v be decomposed into its parts, that is, into vectors of V;?

Clearly, v can always be decomposed as
r
v=Zaa®ba®...®za, 1.1
a=1

but bear in mind that this decomposition is highly non-unique. What is unique is
the minimal such r, called the tensor rank of v. If we only had three parts (n = 3),
we could represent this decomposition as a full simplex,

3

1 2

where the filled face indicates that the summation index a is shared by the 3 parts.
But there are many other ways to decompose v. The parts could be connected

‘in a line’,
V= Z Ay, ® by, 0, ®Copq, ®---®Zg 1.2)

represented as

1 2 3 n
While this is the natural decomposition to describe quantum many-body systems in
one spatial dimension (with open boundary conditions), it is essentially absent in
mathematics. The minimal number of terms for the ‘line decomposition’ is called
the operator Schmidt rank, and it can be much smaller than the tensor rank.
Or the parts of v could be connected ‘in a circle’,

r

V= Z aan:al ® balva ® e ® zan—l’an

Ay,0g;-050, =1

represented as
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n—1

This decomposition would be relevant for the description of one-dimensional quan-
tum many-body systems with periodic boundary conditions, and it is unclear what
its minimal number of terms is called, and how it relates to the ranks of the other
decompositions.

Or v could be decomposed as

-
V= Z a,®b,s®cp®ds, ®e, (1.3)
o,fB,y=1

represented as

1 2 4 5
Again it is unclear what the minimal number of terms r is called, and how it relates
to the other examples.
Or, if v were bipartite (n = 2), its parts could be connected by a double edge,

V= Z aa’ﬁ ® ba,ﬁ (14)

a,f=1

represented as

Yy

Such decompositions are important for positive decompositions with invariance
(Q3), as we will see later.

After these preparatory examples, we can address Q1: How do the parts form
the whole? P1 provides a framework to put all such decompositions, and more,
under one umbrella given by a weighted simplicial complex Q2. The central idea is

that the parts, i.e. individual vector spaces, be associated to the vertices of 2, and the
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the summation indices be associated to the maximal facets of Q— we have been using
this framework in the examples and representations above. A weighted simplicial
complex is a "well-behaved" weighted hypergraph. That is, given a set of vertices
V, the facets F are elements of its power set p(V)—for example, the simplex of
page 4 is described by a facet with vertices {1,2,3}. Since the simplicial complex
is weighted, these facets can have multiplicity—for example, in the double edge of
page 5, the facet {1, 2} has multiplicity 2.

Moreover, for every simplicial complex €2, the minimal number of terms in the
Q decomposition defines the rank,. The tensor rank decomposition corresponds to
the case when Q has a full simplex, i.e. a facet containing all vertices, the circle
decomposition to the case when (2 is the circle graph, the decomposition of (1.3) to
Q being the hypergraph of page 5, and the double edge decomposition to the case
when Q consists of two vertices and a double edge.

What can we do with this framework? We can put the knowledge coming from
mathematics (mainly concerning the tensor rank or its symmetric version) and that
of quantum many-body systems (mainly concerning the operator Schmidt rank or
its translationally invariant version) under one umbrella, and compare ranks and
transfer results (as done in P1). More generally, we can study questions such as Q2
and Q3, as we will do below. But let us first consider the special case of two parts.

<= The case of two parts ==

One final remark: If v only has two parts, this framework is unnecessary (apart
from the double edge case, i.e. the multiplicity of the edge, which will be relevant
for Q3). In the bipartite case, the minimal number of terms—the rank—fully char-
acterises the dependence of the whole on its parts, in the sense that v is a sterile
concatenation of its parts if and only if the rank is 1.! The rank is easy to compute,
and it is impossible to exaggerate its importance across the natural sciences and
mathematics. But the simplicity of the bipartite case is misleading, and it may be
an accident of the number two. For three parts it is no longer true that v is a sterile
concatenation of all of its parts if and only if the tensor rank is 1. Other examples
where switching from 2 to 3 entails a jump in complexity include the famous 2SAT
versus 3SAT problems—the former can be solved in polynomial time, whereas the
latter is NP-complete.?

IThe rank is a very non-smooth measure of this fact, as it can grow arbitrarily by letting the parts
interacts a tiny bit—an . This may partly explain the answer to Q4.

2NP is the class of decision problems that can be solved in polynomial time by a non-deterministic
Turing machine. NP-complete means that the problem is in NP, and that it admits a polynomial-time
reduction from any other problem in NP.
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1.2 If the whole is invariant, are the parts invariant too?

First of all, what does it mean for the whole to be invariant? We say that v is G
invariant (where G is a group) if gv = v for all elements g in G, and gv is the
permutation of some parts in v. If G is full permutation group S,, to say that v is
G invariant is to say that v be fully symmetric or permutationally invariant. On the
other hand, if G is the cyclic group C,, to say that v is G invariant is to say that
v be translationally invariant. Note that this is an “external symmetry” of v, as it
permutes its parts, and does not refer to the internal symmetries of the elements of
v, e.g. that they be SU(2) or Z, symmetric. These external symmetries are the only
symmetries we will study here.

Now, what does it mean for the parts to be invariant? It means that that the parts
contain a ‘certificate’ of this invariance, i.e. that each local tensor is G invariant. For
example, the decomposition

-
v:Zaa®aa®...®aa (1.5)
a=1

is S,, invariant—if v admits this decomposition, then v is S, invariant, because any
permutation of the above expression leads to itself. (The minimal number such r is
called the symmetric tensor rank). Or the decomposition

,
V= Z Ao 0, ® g, a0, ®...® Ay 4 (1.6)
a=1

is C, invariant, as any cyclic permutation leaves it unchanged. More generally, in a

G invariant decomposition, the term v/[;] Ei:}}

gi, where the summation index has changed from f3 to g~* 3, and the part index has

at site i must equal the term v at site
also changed from i to gi. If all elements in the decomposition satisfy this property,
we say that the parts are G invariant. This gives rise to an (2, G)-decomposition
(whose formal definition can be found in page 10 of P1). The bottom line is that, in
an (Q, G)-decomposition, the elementary tensors satisfy some symmetry conditions.

Now, by construction, if v admits an (2, G)-decomposition, then v is G invariant.
Q2 (and the main question considered in P1) is the reverse one:

If v is G-invariant, does it admit an (Q, G) decomposition?

The answer is: Yes, if G acts freely on £ (Theorem 13 of P1). Moreover, the multi-
plicity of the facets of Q can always be increased to satisfy this condition (Proposi-
tion 7 of P1). In other words: we give a sufficient condition for the existence of an
(92, G)-decomposition, namely the freeness of the action of G on (2, and show that



1. From the whole to the parts

this condition can always be satisfied by increasing the multiplicity of the facets.
(Freeness is given in Definition 4 of P1).

Our result generalises the symmetric tensor rank decomposition (considered
in mathematics) or the translationally invariant operator Schmidt decompositions
(used to describe chains of quantum spins). It also allows to compare the (2, G)
ranks if the group changes (Section 4.2 of P1) or if the simplicial complex changes
(Section 4.3 of P1). For example, we show that the symmetric tensor rank is the
largest of the (€2, G) ranks. Additionally, it lets us address Q3 by combining invari-
ance and positivity, as we will now see.

1.3 If the whole is positive, are the parts positive too?

Analogously to Q2, let us start by asking: What does it mean that the whole is posi-
tive? It means that v is in a certain cone—typically, the cone of positive semidefinite
matrices, or the cone of nonnegative tensors. And what does it mean that the parts
are positive? It can mean three things:

(i) In the separable case, it means that the parts are in the same cone as v.

(i) In the purification case, it consists of a decomposition of a certificate that v
is in that cone. For example, if v is in the cone of the positive semidefinite
matrices, the purification is a decomposition of A, where v = A'A.®

(iii) In the quantum square root case, it consists of a decomposition of a Hermitian
certificate that v is in that cone. For example, if v is in the cone of the positive
semidefinite matrices, the quantum square root is a decomposition of A, where

2
v =A%

More formally:

(i) A separable (92, G) decomposition is an (2, G) decomposition where every v[[;]
is positive semidefinite. The minimal number of terms is called the (9, G)

separable rank, denoted sep-rank g .

(i) An (£, G) purification of v is an (2, G) decomposition of L where v = LTL.
The minimal number of terms is called the (9, G) purification rank, denoted
puri-rank g .

(iii) An (£, G) quantum square root of v is an (2, G) decomposition of L where
v = L2. The minimal number of terms is called the (£, G) quantum square
root rank, denoted g-sqrt-rank g 5.

3For the mathematician: T denotes complex conjugate transpose, in mathematics usually denoted *.



1. From the whole to the parts

Fig. 1.2: Positivity gives rise to the notion of convexity, which interacts with the multiplicity of systems
in a surprising way. (Lithograph by M. C. Escher).

Now we can address Q3, together with invariance:

If v is G-invariant and positive, when does it admit each of the three positive (Q, G)

decompositions?

The short answer is that v will generally admit each of the three positive invariant
decompositions, but generally for a very large prize. That is, there are separations
among each of these ranks. We know this because in the very special case in which
v just has two parts, the above decompositions correspond to the nonnegative fac-
torisation, the psd factorisation and the square root factorisation, respectively, and
there are separations among these already. In plain words, what happens is that
cones interact in a very rich way with the multiplicity of systems (Fig. 1.2), and this
is already the case for the classical (i.e. commutative) and bipartite case. Let us
explain this in more detail for the bipartite case.

«» Correspondence with matrix decompositions <=

Our framework, and in particular our three definitions of positivity of page
8, generalise other well-known decompositions. Specifically, in the simplest non-
trivial case, when the simplicial complex  consists of two vertices sharing an
edge, our decompositions specialise to the well-studied non-negative [CR93], pos-
itive semidefinite [FGP*15], completely positive [BSM03] and completely positive
semidefinite transposed decompositions P2 of matrices. Let us explain this.



1. From the whole to the parts

For matrices, there are two main notions of positivity. The first is that M be
nonnegative, meaning entrywise nonnegative. This notion of positivity (or nonneg-
ativity) is in essence the same as that of a nonnegative vector. The second is that M
be positive semidefinite, namely diagonalisable and with nonnegative eigenvalues.
M could thus be real and symmetric, or Hermitian—in either case with nonnegative
eigenvalues. For the quantum case the latter is the important one. This notion of
positivity is inherent to a matrix—the matrix itself can have complex entries, but its
eigenvalues must be nonnegative.

For a matrix M, Q3 becomes:

If M has some notion of positivity, can M be decomposed so that it preserves this
notion of positivity?

If M is nonnegative, the nonnegative factorisation is defined as
M =AB where A and B are nonnegative 1.7

and the nonnegative rank is the minimal number of columns of A, denoted nn-rank
(or rank, ). A noncommutative version of the nonnegative factorisation is the posi-
tive semidefinite (psd) factorisation, which is defined as

M; ; =tr(A;B;) where all A; and B; are positive semidefinite. (1.8)

The psd rank is defined as the minimal size of all A;s and Bjs that satisfy (1.8).
(Note that there need to be as many A;s (B;s) as the number of rows (columns)
of M, so this cannot define a rank.) Usually these psd matrices are defined in the
reals [FMP"12, FGP*15] (i.e. they are real symmetric matrices with nonnegative
eigenvalues), although for our connection the complex case is the relevant one.
Since in the psd factorisation we could choose all A; and B; to be diagonal, and we
would recover a nonnegative factorisation, it follows that it is harder to decompose
with nonnegative numbers than with real numbers (rank < nn-rank), that noncom-
mutativity helps (psd-rank < nn-rank), and that it does not get smaller than the
rank.*

Why is this interesting? Because the nonnegative rank and the psd rank are much
more expensive than the rank. In plain words, negative numbers allow for mas-
sive shortcuts in a finite set of sums (even if the result of these sums is positive).
Formally, there is a separation between each of these ranks: there is a sequence
of matrices M,, (whose size increases with n) such that rank(M,) is bounded, but

4The precise inequality is %\/ 1+ 8rank(M)— 1 < psd-rankg (M) < nn-rank(M).

10



1. From the whole to the parts

- .. symmetric . .
IIllI’llHlal faCtOI'lSﬂthl’l —) symmetrlc factorlsatlon

nonnegativel \Lnonnegative

. . . symmetric . .
nonnegative factorisation E— cp factorisation

non-commutative\L \Lnon-commutative
symmetric

psd factorisation —— > cpsd factorisation

Fig. 1.3: Existing factorisations of matrices, including symmetry (on the right column). In the top row,
the factorisation does not impose any positivity condition on the local terms. In the middle row, the
factorisation demands that the local matrices be nonnegative, whereas in the bottom row, it asks for a
non-commutative version of nonnegativity, namely that of Eq. (1.8). Each factorisation has an associated
rank; that of the minimal factorisation is the usual rank.

nn-rank(M,,) diverges. This means that rank cannot be upper bounded by a func-
tion of nn-rank exclusively, and we write rank < nn-rank. The same is true for the
rank and psd rank, rank < psd-rank, and for the psd rank and nonnegative rank,
psd-rank < nn-rank [GPT13]. So there are separations everywhere.

Let us now add symmetry of M as a further ingredient, which for M a matrix just
means that M be symmetric (i.e. M = M' ifreal,and M = M Tif complex). The three
decompositions above in the symmetric case are, first, the symmetric factorisation,
defined as

M = AA! where A is complex (1.9)

where the minimal number of columns of A is the symmetric rank. Second, the cp
factorisation (standing for completely positive), defined as

M = AA where A is nonnegative (1.10)

and the minimal number of columns of A is the cp rank. And third, the cpsd factori-
sation (standing for completely positive semidefinite), defined as

M; ; = tr(AA;) where A; is positive semidefinite (1.11)

and the minimal size of all A;’s is the cpsd rank (see Fig. 1.3). So ‘completely’ here
means ‘symmetric’.

Now, our framework of (2, G) decompositions, with the notions of positivity
of page 8, provides a non-commutative generalisation of the six decompositions of
Fig. 1.3. To see this, we now consider M to be a bipartite operator (instead of a

11



1. From the whole to the parts

bipartite matrix), i.e. M € .y ® M4, where #, is the space of d x d complex
matrices. The operator Schmidt decomposition of M is defined as

M= A,®B, (1.12)
a=1

and the minimal such r is the operator Schmidt rank. The separable decomposition
of M is defined as

-
M= Z o,®71T, whereo,,T, are positive semidefinite (1.13)
a=1

where the minimal such r is the separable rank. (This only exists if M is in the
convex cone of the Cartesian product of the cones of positive semidefinite matrices,
i.e. if M is separable). The local purification of M is defined as

.
M=LL', whereL=> 4,85, (1.14)

a=1

where L need not be a square matrix,” and the minimal such r is the purification
rank. The quantum square root of M is

.
M=1? whereL= ) A,®B, (1.15)
a=1

and the g-sqrt-rank is the operator Schmidt rank of L.

If M is additionally symmetric, i.e. invariant under the permutation of parts 1
and 2, we have the t.i. operator Schmidt decomposition (where t.i. stands for trans-
lationally invariant), which is given by

.
M=) A,®A, (1.16)
a=1

and the minimal such r is the t.i. operator Schmidt rank. The t.i. separable decom-
position is given by

-
M= Z 0,®0, where o, is positive semidefinite 1.17)
a=1

SFor the physicists: this the same as a purification M = tr,|v){(3p|. The sum over auxiliary indices
aux becomes the internal sum in the matrix multiplication of LL" in (1.14).

12



1. From the whole to the parts

. . .  symmetric . ..
operator Schmidt decomposition —— t.i. operator Schmidt decomposition

nonnegative\L \Lnonnegative

symmetric

separable decomposition ——————— t.i. separable decomposition

non-commutative\L \Lnon-commutative

. symmetric . .
local purification > t.i. local purification

Fig. 1.4: Our non-commutative generalisation of Fig. 1.3, concerning factorisations of bipartite operators
(instead of matrices), without and with symmetry (left versus right hand side). The top row contains
the factorisation without any certificate of positivity in the parts. The middle row contains the separable
decomposition, which essentially imposes nonnegativity. The bottom row contains a non-commutative
version of positivity, namely a purification, where the parts contain a certificate of positivity in a non-
trivial way. Just one detail is not matching: the t.i. local purification generalises the cpsd factorisation
with an additional transpose, which we term the cpsdt decomposition (see P5 and P1 for details).

and the minimal such r is the ti-separable rank. And the t.i. local purification is

.
M=AA"  whereA= > B,®B, (1.18)

a=1

and the minimal such r is the t.i. purification rank. These six decompositions for a
bipartite operator M are summarised in Fig. 1.4.

What we show in P1 (and partially in P5) is that, if M is a bipartite operator
which is diagonal in the computational basis, then Fig. 1.4 becomes Fig. 1.3. In
words, this says that our generalisation is sensible. More formally, if M = diag(N)
where N is a nonnegative matrix and diag(N) rearranges the entries of N into a
diagonal, the factorisations of the psd matrix M coincide with the factorisations of
the nonnegative matrix N, up to an extra transpose in the cpsd factorisation (giving
rise to the cpsdt factorisation; see Table 1.1).

Since there is a separation between rank, nonnegative rank and psd rank (i.e.
the left column of Fig. 1.3), from the correspondence of Table 1.1 it follows that
there is a separation between the operator Schmidt rank, the purification rank and
the separable rank (i.e. the left column of Fig. 1.4). In symbols, osr < puri-rank <
sep-rank. (The former separation was a central result of [DSPGC13]).

Finally, the correspondence of Table 1.1 also inspired us to generalise the results
for matrices rank two (explained, e.g., in [FGP"15]) to operators with operator
Schmidt rank two in P4, summarised in Table 1.2. This hopefully illustrates the
usefulness of our generalisation.

13



1. From the whole to the parts

Decomposition of M = diag(N) | Decomposition of N
operator Schmidt decomposition | minimal factorisation
separable decomposition | nonnegative factorisation
local purification | complex psd factorisation
t.i. operator Schmidt decomposition | symmetric factorisation
t.i. separable decomposition | cp factorisation
t.i. local purification | complex cpsdt factorisation

Tab. 1.1: If a psd matrix M is diagonal in the computational basis, M = diag(N) where N is the nonneg-
ative matrix containing the diagonal of M, then the decompositions of M on the left hand side are the
same as the decompositions of N on the right hand side P5, except for an additional transpose in the
cpsd factorisation.

Nonnegative matrix M rank(M)
1 Trivial (all ranks the same)
2 nn-rank = psd-rank = 2
3 nn-rank and psd-rank can be unbounded

Positive semidefinite matrix p  osr(p)

1 Product state (all ranks the same)
2 Separable, and sep-rank = puri-rank = 2
3 puri-rank and sep-rank can be unbounded

Tab. 1.2: The case of rank 1 is trivial, of rank 2 is easy and fully characterised, and of rank 3 is as
hard as the general case, i.e. it already shows separations. This is true both for a nonnegative matrix M
[FGP*15] and for a bipartite positive semidefinite matrix p, as we showed in P4.

1.4 And in the approximate case?

Does the answer to Q3 change if the parts only need to reproduce the whole up
to some ¢? P2 studies (2, G) decompositions with positivity in the approximate
case (Fig. 1.5), where the notion of approximation is given by &-balls around the
elements, in some norm (Schatten p-norm or £ » norm). For example, we define

ranka’G)(M) = Ni:%jf}w) rank(g ¢)(N), (1.19)

where B, (M) is the ball around M measured in the given norm, and similarly for the

£ 3 €
(£2,G6)’ (£2,G) (©2,G6)"

every such approximate rank has an additional superindex p indicating the Schatten

other cases, giving rise to sep-rank puri-rank and g-sqrt-rank’ In fact
p-norm in which the distance in the ball B, is measured, or ¢, if the distance is
measured in £, norm, as the upper bounds on these approximate ranks will depend
on the norm.

The central result of P2 is that essentially all separations among ranks disappear

14



1. From the whole to the parts

Fig. 1.5: The interaction of positivity (convexity) and the multiplicity of systems with a finite resolution
(i.e. with ¢ balls) is very different than in the exact case, as many separations between ranks disappear,
as we showed in P2. So the answer to Q4 is very different to that of Q3. (Compare with Fig. 1.2).

in the approximate case (Corollary 26 of P2). In other words, if the parts need only
represent the whole approximately, the cost can be much lower. To prove the result,
we leverage the recent approximate Carathéodory Theorem [Ival9], which shows
that every element in a convex hull can be approximately represented by using a
